

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Achilles

[image: _images/tf--gpu-1.12.0-blue.svg]
[image: _images/keras-2.1.6-blue.svg]
[image: _images/docs-latest-green.svg]
[image: _images/preprint-soon-green.svg]
[image: _images/9d50ecfc77d5de9a6fcf1188d47a83707876d594.svg]

v0.3-alphainternal release, no tests

Achilles is a platform for training, evaluating and deploying neural network models that act as taxonomic classifiers of raw nanopore signal, for instance by distinguishing between nanopore signals from host (e.g. human background) and pathogen DNA (e.g. Burkholderia pseudomallei or Mycobacterium tuberculosis). The minimal hybrid architecture of the networks can also be thought of as a template for a variety of classifiers, that can be trained on any property of the sequence data that is discernible from the pore signal and can be labelled across signal reads.

The neural networks are essentially a Keras implementation of the hybrid convolutional and recurrent architecture from deep neural net base-caller Chiron [https://github.com/haotianteng/Chiron] published in Gigascience (2018) [https://academic.oup.com/gigascience/article/7/5/giy037/4966989]. We have replaced some of the regularization functions with those available in Keras. In particular, we implemented recurrent and regular Dropout in the LSTM layer instead of Batch Normalization.

Overall, the implementation is minimal, and replaces the bi-directional LSTM with a regular LSTM layer. Unlike the deeper architectures used previously, the core model combines a single residual block with a single LSTM. This lightweight architecture has around 600,000 parameters, somewhere around the size of Google’s MobileNets. They require a higher number of epochs for training, but learn from limited signal data and keep model predictions fast, particularly in the interest of mobile deployment or real-time / online learning from signal streams.

Install

Achilles can be installed with Python 3.6:

pip install git+https://github.com/esteinig/achilles@v0.3-pre # does not install tensorflow-gpu or keras

It requires PoreMongo, which can for now be installed with:

pip install git+https://github.com/esteinig/poremongo@v0.3-pre

You know if the driver and tensorflow-gpu work when you call the main help interface of Achilles:

achilles --help

Important

The installation does not include tensorflow-gpu or keras since both depend on the GPU setup you are running. For now, the easiest way to install a suitable environment for Achilles on most relatively up-to-date setups is to install the conda env environment.yml from this directory. The environment comes with tensorflow-gpu 1.12, cudnn 7.3.1, cudatoolkit 9.2, keras 2.1.6, and Python 3.6. This however may not work if different CUDA drivers are used on the GPU (for now only tested on 9.2). If that is the case, please use the appropriate versions for these packages or contact your sysadmins to install the right environment for you. For instance, you might need tensorflow-gpu 1.13 and keras 2.2.0, cudnn 4.0 and cudatoolkits 10 for a CUDA 10.0 driver on the GPU.

Walkthrough

Just a quick walkthrough for prediction at the moment. First, pull the model collections into local storage which is in a hidden folder in the home directory (~/.achilles/collections):

achilles pull

List your collections:

achilles list -c

Inspect the alpha version collection, including parameters:

achilles inspect -c alpha -p

Inspect model in collection alpha, including training and validation results:

achilles inspect -c alpha -m bacteria-g1 -p

Run a prediction on a directory of Fast5 files, models can be HD5 files generated with achilles train or collection/model_name. Size of window slices determines the size of the input layer, therefore the parameter must be the same as in the trained model. You can see the trained window size when you use achilles inspect and the -p flag to inspect a collection. For now batch size -b should equal the number of slices sampled from a read -c as this constitutes a single forward pass on the GPU. Mini batch support for multipel read predictions is coming soon.

achilles predict -d path/to/fast5 -m alpha/bacteria-g1 --size 300 -c 100 -b 100

Command line interface

This pre-release version is for testing the software with some pre-trained models. You can sorta also train your own models, but that relies on the MongoDB database sampler from Poremongo, which is also in pre-release and subject to change, so the code is not stable or tested at the moment.

Achilles is accessible through the command line interface, which exposes the important tasks to the user, and the access point interface through the modules in Python (API documentation coming soon). Command line tasks like achilles train and achilles create have a fairly wide range of parameters for signal sampling, training and evaluating the networks.

This is kind of what the process currently looks like, minus Nextflow + Docker + Kubernetes + Google Cloud which is scheduled for the beta release.

Neural Network Tasks

:sunflower: achilles create

Create a training or evaluation HDF5 data set of singal slices from the Fast5 files for input into training with Achilles. Uses Poremongo to sample labels from MongoDB database index of all read files on the system. Does not need GPU.

Usage: achilles create [OPTIONS]

 Sample and compile datasets with PoreMongo

Options:
 -i, --pmid PoreMongo connection ID.
 -c, --config YAML configuration file for creating
 Datasets.
 -t, --tags Tags (labels) to sample from, comma
 separated args.
 -o, --output, --dataset Output HDF5 file containing sampled tensors
 and labels. [default: dataset.hd5]
 -m, --max_windows Maximum number of sampled signal value
 windows per tag / label. [default: 100000]
 -r, --max_windows_per_read Maximum number of windows sampled from read
 / diversity of input data. [default: 50]
 -w, --window_size Length of sliding window to sample from
 signal read. [default: 200]
 -s, --window_step Step of sliding window to sample from signal
 read. [default: 0.1]
 -rs, --sample Number of random Fast5 models to sample from
 database per tag / label [default: 10000]
 --proportion Proportion of Fast5 models to sample per tag
 / label [default: equal]
 --exclude Comma separated list of HDF5 datasets to
 exclude from sampling
 --global_tags Global tags to apply to sample, comma-
 separated, e.g. to force pore version: R9.4
 [default: R9.4]
 --validation Proportion of data to be split into
 validation
 --display Display tags in database and exit.
 [default: False]
 --help Show this message and exit.

:seedling: achilles train

Train a HDF5 training dataset of signal slices and labels in Keras using the Achilles variant of Chirons hybrid convolutional and recurrent architecture. A simple fully connected layer predicts labels in the output. Absolutely needs GPU for training.

Usage: achilles train [OPTIONS]

 Train neural network classifiers in Achilles

Options:
 -f, --file Input training / validation HDF5 dataset
 [required]
 -i, --run_id Training run ID [default: model; required]
 -o, --outdir Output directory [default: training_model;
 required]
 -l, --load Trained model weights from Keras, HDF5 to continue
 training, or re-train model [default:]
 -v, --verbose Show training progress output and model
 architecture in Keras [default: False]
 -a, --activation Activation function applied to final fully
 connected classification layer [default: softmax]
 --residual_block Number of stacked ResidualBlocks in initial layers
 [default: 1]
 --lstm Number of stacked LSTMs connected to Residual
 Blocks [default: 1]
 --channels Number channels per Residual Block [default: 256]
 --units Number of units per LSTMs [default: 200]
 --gru Simple GRU cell instead of LSTM [default: False]
 --bidirectional Bidirectional LSTM [default: False]
 --dropout Dropout applied to LSTM layers [default: 0.2]
 --recurrent_dropout Internal dropout applied to LSTM layers [default:
 0.2]
 --optimizer Compile model with optimizer for training
 [default: adam]
 --loss_function, --loss Compile model with loss function for training
 [default: binary_crossentropy]
 -e, --epochs Number of epochs to train model for [default:
 100]
 -b, --batch_size Batch size for training, major determinant of RAM
 used on GPU [default: 200]
 -t, --threads Feed batches into training function using multiple
 processes [default: 2]
 --gpus Build the model for distributed training across
 multiple GPUs [default: 1]
 -g, --gpu SET CUDA_VISIBLE_DEVICES to train model on
 specific GPU (e.g. 0 or 0,1)
 --help Show this message and exit.

:deciduous_tree: achilles predict

Predict labels using a trained model and a directory of .fast5 files. Can --watch a dirrectory for live .fast5 files. Should run on GPU.

Usage: achilles predict [OPTIONS]

 Make predictions on a directory of Fast5

Options:
 -d, --dir Directory for incoming Fast5 to classify
 -w, --watch Watch directory for incoming Fast5 to classify
 -m, --model HDF5 file of trained Achilles model
 -s, --window_size Length fo window, must match trained input model
 [default: 100]
 -sc, --window_slices Maximum number of window slices sampled from read
 [default: 50]
 -ws, --window_step Step of sliding window to sample from signal
 read. [default: 0.1]
 -b, --batch_size Batch size for prediction, determinant of
 RAM used on GPU [default: 200]
 -g, --gpu Set CUDA_VISIBLE_DEVICES to train model on
 specific GPU (e.g. 0 or 0,1)
 -ms, --model_summary Show model layer summary on loading model
 [default: False]
 -n, --product Calculate the normalized product for predicting
 labels over slices [default: False]
 --help Show this message and exit

:cactus: achilles eval

Evaluate a trained HDF5 model (always best validation error from training run with achilles train) across a directory of evaluation datasets. Should run on GPU.

Usage: achilles evaluate [OPTIONS]

Options:
 -m, --model Model file HD5.
 -e, --evaluation Evaluation file HD5 sampled from Achilles.
 -b, --batch_size Evaluation batch size. [default: 500]
 --help Show this message and exit.

Model Management Tasks

:leaves: achilles pull

Pulls model collections from Achilles repository into ~/.achilles/collections. This includes the trained neural network model HDF5 files and a YAML file that holds some data related to the models.

Usage: achilles pull [OPTIONS]

Pull model collections into a local cache

Options:
 --help Show this message and exit.

:four_leaf_clover: achilles list

List all collections in local cache directory ~/.achilles/collections

Usage: achilles list [OPTIONS]

Options:
 -c, --collections List all collections available in cache.
 --help Show this message and exit.

:palm_tree: achilles inspect

Inspect a collection or model within a collection, with more detail using the flag -p:

Usage: achilles inspect [OPTIONS]

Options:
 -m, --model Model file to inspect.
 -c, --collection Name or UUID of model collection in local cache.
 -p, --params Show detailed collection parameters for sampling and
 training stages. [default: False]
 --help Show this message and exit.

Pre-trained models (v.0.3-alpha)

Currently all pretrained models are standardized to a lightweight 1 x 256-channel ResBlock + 1 x 200-unit LSTM architecture with Dropout in recurrent layers that predicts on overlapping slices of 300 signal values from R9.4 pores; this creates a network model with around 631,730 parameters, which we trained in 500 epochs on a Tesla V100 GPU with 16GB memory over 8 hours with a batch size of 3000 batches per forward pass. The model predicts from a fully connected layer with Softmax activation function over n labels. Training on the alpha version models is conducted on 100,000 signal slices extracted evenly over each subcategory of the label (pathogens, chromosomes) with a random sampling window on the read that extracts 50 x 300 slices with step 40. This equates to roughly 2000 reads per label and around 200 - 1000 reads per subcategory in the label depending on the number of subcategory mixtures that tags in the database are sampled from (e.g. pathogens or chromosome mixtures). Models are trained using Adam optimizer and the binary crossentropy loss function, which is selected due to the binary prediction of pathogen vs. host, depending on how we train the models with pathogen subcategories and human chromsomes.

create:
 global_tags: R9.4
 sample_proportions: equal
 sample_files_per_tag: 20000
 max_windows: 100000
 max_reads: null
 window_size: 300
 window_step: 0.1
 window_random: true
 window_recover: true
 max_windows_per_read: 50

train:
 window_size: 300
 workers: 2
 nb_residual_block: 1
 nb_rnn: 1
 activation: softmax
 optimizer: adam
 loss: binary_crossentropy
 epochs: 300
 batch_size: 300
 dropout: 0.2
 recurrent_dropout: 0.2

In these pretrained models the human label is always trained from chromosomes 2, 8, 14, 18 and evaluated on chromsomes 5, 9, 15, 17 to make sure that the classifiers generalize over the whole human genome. Mixtures of pathogens on the other hand are useful to build generalized classifiers (bacteria vs. human) vs. specific classifiers (MRSA vs human). Label 0 in these models is pathogen, and label 1 is the host, for instance in this tag sampling pattern from PoreMongo:

training:
 - id: tb
 tags: [[TB], [Chr_2, Chr_8, Chr_14, Chr_18]]
 - id: bacteria1
 tags: [[BP, Kleb, Ecoli], [Chr_2, Chr_8, Chr_14, Chr_18]]

:mouse2: Generalists:

	Bacteria in human host (trained on Human reference genome mixture of chromosomes and K. pneumoniae, M. tuberculosis, B. pseudomallei) - models/alpha/bacteria1.human.hd5

	Bacteria in human host (trained on Human reference genome mixture of chromosomes and E. coli, M. tuberculosis, B. pseudomallei) - models/alpha/bacteria2.human.hd5

:penguin: Specialists:

	Mycobacterium tuberculosis in human host - models/alpha/mtuberculosis.human.hd5

	Klebsiella pneumoniae in human host - models/alpha/kpneumoniae.human.hd5

	Burkholderia pseudomallei in human host - models/alpha/bpseudomallei.human.hd5

	Lambda phage in human host - models/alpha/lambda.human.hd5

	Mock community bacteria in human host - models/alpha/bacteria2.human.bacteria.hd5

:octopus: Multitaskers:

	… soon …

Training data

:space_invader: Pathogen:

	Zika virus detection from ZIBRA [http://www.zibraproject.org/data/] project in Brazil - 2D R9 amplicons

	Burkholderia pseudomallei + closely related B. cepacia, B. mallei - 1D Rapid R9.4

	XDR Mycobacterium tuberculosis from Papua New Guines - 1D Rapid R9.4

	Klebsiella penumoniae from clinical culture in Australia - 1D Rapid R9.4

	Staphylococcus aureus from reference strain ST243 - 1D Rapid R9.4

:ghost: Host:

	Human nanopore reference genome [https://github.com/nanopore-wgs-consortium/NA12878/blob/master/Genome] CEPH1463 (NA12878/GM12878, Ceph/Utah pedigree) - 1d Rapid R9 + R9.4

Documentation

Coming soon.

achilles.readthedocs.io [https://achilles.readthedocs.io]

Contributors

	Eike Steinig

	Lachlan Coin

Setting up on Spartan

This is for our partition on Spartan using Singularity:

module load singularity/3.6.3

You can update the container by pulling the latest version from DockerHub but should not be necessary for now (unless you want to make some pull requests and update the repository code):

singularity pull achilles.sif docker://esteinig/achilles:latest

Then assign base directory and container execution alias for working with the container loading the data directory into the /data/achilles path inside the container:

BASE=/data/gpfs/projects/punim1384/achilles # Achilles stuff on partition to load (outside container)
DATA=/data/achilles # Achilles loaded data (inside container)

alias achilles="singularity run -B ${BASE}/data:${DATA} ${BASE}/containers/achilles.sif"

Test PoreMongo and Achilles CLI - the latter may raise some tensorflow-gpu warnings because we have not passed the (non available) GPU drivers through to the Singularity container, which is fine for now:

achilles pm --help
achilles achilles --help

MongoDB Service

Start a MongoDB service in background screen on login node - do not use for intensive tasks! It’s a bit sneaky but we will not use a lot of memory or processors for samplimg from the database so it should be fine

screen -S mongo-service -d -m bash -c "singularity run -B ${BASE}/dbs/fuyi:/data/db ${BASE}/containers/mongo.sif"

This will open the user specific MongoDB database in ${BASE}/dbs and serve on localhost:27017 by default - you can open the screen with screen -r mongo-service to confirm the client is running and detach with Ctrl + A + D.

PoreMongo Client

Now test a query against the database using PoreMongo CLI. This should give a connection success log and an empty tag table.

achilles pm display

Next step is to index some test files with the PoreMongoclient for loading data into the DB. Each time reads are indexed from a (multi-)Fast5 or directory of Fast5 files, the objects are assigned user provided tags: usually they will be somethign like R9.4, Staphylococcus aureus, or FAO92834 flow cell numbers to access sample tags later for generating the training sets; a database (--db) can be specified to separate data sets and must be specified in subsequent queries and sampling operations to change the default poremongo DB

achilles pm index -f ${DATA}/test_data/human.fast5 -t R9.4,Human,TestData
achilles pm index -f ${DATA}/test_data/saureus.fast5 -t R9.4,MRSA,TestData

Now run the display task again to check out the new tagged reads in the DB which we can now sample from (using --total for a read total count query and --quiet to suppress connection log output)

achilles pm display -tq

Next we sample 20 signal reads with the Human tag randomly from the database using the sample task with display (-d) and suppressed log output (-q) so the results are printed cleanly into the console:

achilles pm sample -dq -s 20 -t Human

Repeat the command to confirm that reads with the Human tag are sampled randomly

achilles pm sample -dq -s 20 -t Human

Output columns are in order:

read_id read_file tags read_uuid

Achilles Training Dataset

Next we use the Achilles task create to sample and extract a set of tensors for training the nets with the PoreMongo client. We sample from tag or combinations of tags (&) in the command line interface, which are then used as classes for predictions (0, 1, 2 ... for each tag combination):

achilles achilles create \
 --tags TestData,Human TestData,MRSA \ # or use --global_tags
 --dataset ${DATA}/test_training.hd5 \
 --max_windows 100000 \
 --max_windows_per_read 50 \
 --window_size 200 \
 --window_step 0.1 \
 --sample 10000 \
 --proportion equal \
 --global_tags R9.4 \
 --validation 0.3

Here we sample to train a network on a binary class prediction of Human and MRSA signal from the TestData and R9.4 tags applied to all indexed reads. We extract 100,000 raw data acquisition value windows per tag combination, where we sample a maximum of 50 windows in a continous sequence of windows of size 200 values with overlap of 10% from an equal sample of 10,000 reads for each tag combination (--tags & --global_tags).

If there are fewer than --sample reads in the database, the sample will contain non-unique reads!

Window size here pre-determines the tensor dimensions for input into the convolutional residual block layer of the nets with a total training size of 2 * 100000 * (1, 1, 200, 1) total window samples (!) with 2 * 100000 labels for both tag combination / prediction classes used in the example. This then corresponds to 100000 / 50 = 2000 reads sampled for 50 consecutive windows per read per tag / label. Training and validation sets are split (--validation) - besides the initial random sample from the reads in the database, the order of blocks of overlapping windows (50 consecutive overlapping windows of size 200 (50, 1, 200, 1) that ‘scan’ the read signal) is randomised before written to the --dataset {name}.hd5 (total data) and {name}.training.hd5 (training-validation data) to the linked Singularity directory $DATA.

HDF5 standard datasets are currently structured as follows:

	/data/data: 2 * 100,000 tensor arrays of shape (50, 1, 200, 1) shuffled

	/data/labels: vector of one-hot encoded prediction labels, ordered as data

	/data/decoded: vector of numeric prediction labels, ordered as data

	/data/reads: vector of read_id of the signal reads used in this dataset, no specific order

In the training-validation set the data are in /training/data and /validation/data including label vectors in the corresponding paths.

Achilles GPU Training

This section is fairly specific to the Spartan cluster. I wrote a SLURM job template here, at the moment the best way is to copy the template into the directory with the training file and run it from there, so in this case:

cd $DATA/test_data
cp $BASE/slurm/train.slurm .

--> Edit the SLURM job file to modify training (see below) <--

sbatch train.slurm

Here is what the SLURM file currently does - note the different parameters. I think this default configuration on a 200 x window size with 10% overlap and batch size 2048 uses around 10 GB RAM - enough for the P100 GPUs on the cluster (12 GB). If you increase the window size for tensor sampling to e.g. 400 x window size withh 10% overlap it is recommended to halve the batch size as both parameters are major determinators of GPU memory required

#!/bin/bash
#SBATCH --job-name train_achilles
#SBATCH --nodes 1
#SBATCH --account punim1384
#SBATCH --partition gpgpu
#SBATCH --gres=gpu:1
#SBATCH --time 72:00:00
#SBATCH --cpus-per-task=2
#SBATCH --qos gpgpuresplat

ASSUME RUNNING IN TRAIN FILE DIRECTORY

module purge
module load singularity/3.6.3

TRAIN=test_training.training.hd5
OUTDIR=training_run

echo "Running training job in $PWD : $TRAIN --> $OUTDIR"

BASE=/data/gpfs/projects/punim1384/achilles

BATCH_SIZE=2048
EPOCHS=300
DROPOUT=0.2
LSTM=1
RESBLOCK=1

BASE_TRAIN=$(dirname $TRAIN)
TRAIN_NAME=$(basename $TRAIN)

echo "Directory of training $TRAIN : $BASE_TRAIN"
echo "Base name of $TRAIN : $TRAIN_NAME"

singularity run --nv -B $PWD:/data/achilles/training -B $BASE_TRAIN:/data/achilles/train_data \
 ${BASE}/containers/achilles.sif achilles train \
 --batch_size $BATCH_SIZE \
 --epochs $EPOCHS \
 --dropout $DROPOUT \
 --lstm $LSTM \
 --residual_block $RESBLOCK \
 --threads 2 \
 --outdir /data/achilles/training/${OUTDIR} \
 --run_id $OUTDIR \
 --file /data/achilles/train_data/$TRAIN_NAME \
 --verbose

Follow training in the SLURM log:

tail -f slurm-*.out

Cleaning up after testing

You can drop the entire database to remove all traces of the indexed reads:

achilles pm drop --force

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

